
2 Presentation. Libre Software for Enterprises: Create your Product,
Feed your Community, Eat your Cake! — Jesús-M. González-
Barahona, Teófilo Romera-Otero, and Björn Lundell

5 Libre Software and the Corporate World — Jesús-M. González-
Barahona, Teófilo Romera-Otero, and Björn Lundell

11 Best Practices for FLOSS Adoption — Carlo Daffara

17 Build and Sustain a Community of Practice: Method Applied to
FLOSS Projects — Stéphane Ribas and Michel Cezon

22 Community Management in Open Source Projects — Martin
Michlmayr

27 The Morfeo Project: an Open Source Approach towards Open
Innovation — Cristina Breña and Andrés-Leonardo Martínez

32 Applying Open Source Software Principles in Product Lines —
Frank van der Linden

41 Addressing Industry Needs in OSS — Jan-Henrik Ziesing

44 SpagoWorld, the Open Source Initiative by Engineering — Gabriele
Ruffatti

51 An Opportunity for Libre Software Companies: Emerging Market
in Developing Countries — Susana Muñoz-Hernández and Jesús
Martínez-Mateo

54 From Novática (ATI, Spain)
Mobile Technologies
A Case Study of the Global System of Mobile Communication
(GSM) in Nigeria — Adeyinka Tella, ’Niran Adetoro, and Paul
Adesola Adekunle

60 Promoting Skills Development in Challenging Times — ECDL
Foundation

62 Selected CEPIS News — Fiona Fanning

* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novática, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de
Informática) at <http://www.ati.es/novatica/>.

 Vol. X, issue No. 3, June 2009

CEPIS NEWS

UPENET (UPGRADE European NETwork)

UPGRADE is the European Journal for the
Informatics Professional, published bimonthly
at <http://www.upgrade-cepis.org/>

Publisher
UPGRADE is published on behalf of CEPIS (Council of European Pro-
fessional Informatics Societies, <http://www.cepis.org/>) by Novática
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS society ATI
(Asociación de Técnicos de Informática, <http://www.ati.es/>)

UPGRADE monographs are also published in Spanish (full version
printed; summary, abstracts and some articles online) by Novática

UPGRADE was created in October 2000 by CEPIS and was first
published by Novática and INFORMATIK/INFORMATIQUE, bi-
monthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European
NETwork), the network of CEPIS member societies’ publications, that
currently includes the following ones:
• Informatica, journal from the Slovenian CEPIS society SDI
• Informatik-Spektrum, journal published by Springer Verlag on behalf

of the CEPIS societies GI, Germany, and SI, Switzerland
• ITNOW, magazine published by Oxford University Press on behalf of

the British CEPIS society BCS
• Mondo Digitale, digital journal from the Italian CEPIS society AICA
• Novática, journal from the Spanish CEPIS society ATI
• OCG Journal, journal from the Austrian CEPIS society OCG
• Pliroforiki, journal from the Cyprus CEPIS society CCS
• Tölvumál, journal from the Icelandic CEPIS society ISIP

Editorial TeamEditorial Team
Chief Editor: Llorenç Pagés-Casas
Deputy Chief Editor: Francisco-Javier Cantais-Sánchez
Associate Editors: Fiona Fanning, Rafael Fernández Calvo

Editorial Board
Prof. Wolffried Stucky, CEPIS Former President
Prof. Nello Scarabottolo, CEPIS Vice President
Fernando Piera Gómez and Llorenç Pagés-Casas, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

UPENET Advisory Board
Matjaz Gams (Informatica, Slovenia)
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Llorenç Pagés-Casas (Novática, Spain)
Veith Risak (OCG Journal, Austria)
Panicos Masouras (Pliroforiki, Cyprus)
Thorvardur Kári Ólafsson (Tölvumál, Iceland)
Rafael Fernández Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur
Cook, Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore,
Hilary Green, Roger Harris, Jim Holder, Pat Moody.

Cover page designed by Concha Arias-Pérez
"Falling Upwards" / © CEPIS 2009
Layout Design: François Louis Nicolet
Composition: Jorge Llácer-Gil de Ramales

Editorial correspondence: Llorenç Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright
© Novática 2009 (for the monograph)
© CEPIS 2009 (for the sections UPENET and CEPIS News)
All rights reserved under otherwise stated. Abstracting is permitted
with credit to the source. For copying, reprint, or republication per-
mission, contact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (August 2009)

"20 years of CEPIS: Informatics in
Europe today and tomorrow"

(The full schedule of UPGRADE is available at our website)

Monograph: Libre Software for Enterprises
(published jointly with Novática*)
Guest Editors: Jesús-M. González-Barahona, Teófilo Romera-Otero,
and Björn Lundell

32 UPGRADE Vol. X, No. 2, April 2009 © Novática

Libre Software for Enterprises

Keywords: Commoditisation, Inner Source, OSS, Soft-
ware Product Lines, Variation Management.

1 Introduction
In recent decades, embedded systems providers have

introduced product line engineering in order to improve the
management of the diversity of their products and to re-
duce development effort. The move towards software prod-
uct line engineering is usually strongly based on large-scale
reuse, leading to cost and time-to-market reduction and
quality improvement and maintenance cost reduction.

Software product line engineering is a way of develop-
ing software applications using platforms and mass
customisation. Mass customisation enables the fast and ef-
ficient production of an individualised product for the cus-
tomer. The artefacts used in different products have to be
sufficiently adaptable to fit into the different systems pro-
duced in the product line. This means the management of
variability in all artefacts of the product line. In particular a
product line often defines a platform of architecture, com-
ponents and supporting tools to provide efficient standard-
ised mechanisms to manage variability.

Other trends in software engineering do not always re-
late to software product lines, whereas their application in
an organisation doing product lines may be beneficial. Vice-
versa, other approaches towards software engineering may
benefit from the introduction of product line principles. In
particular, this holds for OSS development, since it appears
to be a profitable way to obtain good software. OSS devel-
opment has many different forms, but the main aspect of it
is that a distributed group of people work together to pro-
duce a piece of software. However, doing distributed de-
velopment is different to what is presently in use within
most companies doing product lines. OSS communities’
work is based upon their own motivations, often related to
the urge to produce a piece of functionality and to share
this with others.

There is a benefit of OSS for product line engineering.

Because of the diverse use of OSS, product line practices
can be attractive for OSS communities. However, many
characteristics of product line engineering do not match
present day practices in OSS development. For instance
the managed processes are not always feasible or accepted.
It is profitable to combine the benefits of both approaches
which are necessary to overcome these differences. Pres-
ently, there is limited interaction between the OSS and prod-
uct line development communities, although its interest is
already stated in literature [1]. Studying the identified prob-
lems in more detail and evaluating the proposed alternative
approaches more carefully is a goal of future work in this
area.

This paper investigates the relationship between OSS
and product line development. It is based on results ob-
tained in the ITEA project COSI [2]. The following obser-
vations can be made: Software product lines usually need
large investments, long term planning, explicit variability

Applying Open Source Software Principles in Product Lines

Frank van der Linden

Product line engineering improves the management of variability and reuse in embedded systems. It helps to exploit mass
customisation leading to individualised products for the customer. It has led to substantial development processes and
many global planning for a complete range of products (a product line). Open source software (OSS) development does
not have a strong impact in embedded systems companies, partially because the culture of open source developers does
not adhere to global planning and formal processes. However, both developments (often) need distributed development,
and here is the point where software product lines and their open sources can profit from the achievements of each other.
This paper investigates several options of using OSS and its methodology in product line development to reduce the
problems of distributed development and to increase the quality. A small part of the paper discusses the options for OSS
development to benefit from variability management of software product lines and in this way increase the possibility of
customising the resulting products.

Author

Frank van der Linden works at Philips Healthcare CTO Office
since 1984, when he received his Ph.D. in Mathematics at the
University of Amsterdam (The Netherlands). Since 1991 he has
been involved in product line development within Philips. Frank
was project leader of the three successive ITEA projects on
product line engineering, and successively on distributed
development, including OSS development. As part of these
projects he was member of the organizing committee of a series
of workshops on conferences in product lines (PFE & SPLC).
Between 2005 and 2008 he was leader of the ITEA project COSI,
on distributed development and OSS practices in embedded
system industry. In this project he has organized several
workshops on OSS and product lines. He is editor of many
proceedings of SWAPF (Software Architectures for product
Families), PFE (Product Family Engineering) workshops and
SPLC (Software product line conference). He is co-author of
several books on Software product lines.
<frank.van.der.linden@philips.com>.

UPGRADE Vol. X, No. 2, April 2009 33© Novática

Libre Software for Enterprises

management, and often this means large, thus distributed
development. The Information Technologies (IT) industry
uses OSS in a profitable way to obtain good software. It
helps to reduce the costs through effort sharing. It helps to
reduce the lead time through agile development. And it is
an intrinsically distributed way of developing systems. This
parallel concern for distributed development is the main in-
spiration for trying to combine OSS and product line prac-
tices, to the benefit of all involved.

In this paper we explain the aspects of software product
line engineering (Section 2), and relate them to OSS prac-
tices (Section 3). Finally we have a short section on the use
of product line practices in OSS development (Section 4).

2 Product Line Engineering Basics
This section is based on two books of introducing soft-

ware product lines [3], and applying these in embedded sys-
tems industry [4].

2.1 Two Development Processes
Product line engineering emphasises the separation be-

tween the two concerns of building the platform robustly
and being able to build customer-specific applications in a
short time. This leads to two interrelated development proc-
esses (see Figure 1):

Establishing the platform (Domain engineering), in-
cluding the definition of the commonality and the variabil-
ity of the product line.

Deriving applications (Application engineering), in-
cluding the binding of the variability in applications.

The separation into two processes also indicates a sepa-
ration of concerns with respect to variability. Domain engi-
neering is responsible for ensuring that the available vari-
ability is appropriate for producing the applications. This
includes common mechanisms for deriving a specific appli-
cation. Application engineering focuses on the development
of the individual systems on top of the platform. It reuses
the platform and binds the variability for the applications.
These two processes are meant to be loosely coupled and
synchronised by platform releases. As a consequence they
can be based on completely different life-cycle models.

2.2 Variability
Software product line engineering aims at supporting a

range of products which in turn support different individual
customers. Instead of understanding each individual system
all by itself, software product line engineering looks at the
product line as a whole and the variation among the indi-
vidual systems. Equally important it is to know what is com-
mon to all products. Throughout software product line en-
gineering this commonality and variability must be man-
aged. Variability is defined during domain engineering. It is
exploited during application engineering by binding the
appropriate variants. Management of variability involves the
control of the definition and use of commonality variability
within the product line. This includes the binding time of
the variability.

Variability is introduced during many phases of the do-
main engineering process. At each level, variability from
the previous level is refined and additional variability is
introduced, which is not a result of refinement (see Figure
2). Variability is initially defined within stakeholder needs,
and is refined in the following process phases. This is called
internal variability. At each phase specific needs lead to the
introduction of new internal variability.

Setting up the product line infrastructure is not a goal in
itself. The ultimate aim is its exploitation during applica-
tion engineering. This is also called the instantiation of the
variability.

The following notions, which denote self-contained en-
tities in all kinds of development artefacts, are important in
the management of variability:

Variation Point: the variation point describes where
in the final systems differences exist.

Variant: the different possibilities that exist to sat-
isfy a variation point are called variants.

In most cases variation points do not change independ-
ently. Selection of a certain variant for a given variation
point influences the possible choices for other variation
points. In order to enable variability management, a vari-
ability model is needed to ensure the consistent selection
of variants for variation points. In early proposals for vari-
ability modelling the model was often integrated in the un-
derlying notation, using e.g. inheritance. However, it is gen-
erally important to make a distinction between the variabil-
ity model and a main system model. This is much easier to
apply in complex settings, scales much better [5] and sup-
ports the decision process better. Several proposals exist
for variability models. The most important groups are:

Variability models that are based on feature trees [6].
This describes a hierarchy. At the top level a single varia-
tion point exists representing where the variants represent
the choices with the highest priority. Each variant is treated
as a variation point for the next level in the hierarchy.

The orthogonal variability model (OVM) [3]. Here
variants and variation points are distinct elements. Specific
relationships determine which variation points and variants
should/can go together in the same system.

We distinguish between variability in time and variabil-
ity in space [7]. Both kinds are supported with well de-
signed variation points and variants. Variability occurs over
time with the evolution of the product line and represents
the existence of different versions of an artefact that are
valid at different times. This is related to versioning of sys-
tem elements. Variability in space deals with the existence
of an artefact in different shapes at the same time. It leads
to different configurations that are all valid systems at the
same time. This is related to product-line practices.

3 OSS for Product Lines
The interest of OSS within companies doing product

lines originates from the recognition that a large part of
software is becoming a commodity, which makes it highly
interesting for embedded systems developers to introduce

34 UPGRADE Vol. X, No. 2, April 2009 © Novática

Libre Software for Enterprises

Figure 1: Product Line Engineering Process.

Figure 2: Variability Pyramid.

OSS in their product, and thus in their product lines. This
issue of commoditization of software is discussed first. Then
we explain ways to implement OSS in product lines.

3.1 On Commoditization of Software
As a consequence of the commoditization of software

[8], a large part of the software is no longer product spe-
cific. Software is often not built by a single company alone.
Instead software is produced in close cooperation spread
throughout a company and beyond the company’s borders.
Third-party software is integrated in the commodity parts

of software.
For most products, and product lines, only a small part1

(5 to 10 percent) of the software is differentiated. This small
part provides the added value over the competitors. The
remainder is more or less common to the domain, or even
across different domains; i.e. it is more or less a commod-
ity. Effective and efficient software development only fo-
cuses on producing the differentiating parts. The commod-
ity software is preferably to be acquired elsewhere, involv-
ing distributed development and external software such as
commercial off the shelf (COTS) or OSS. In the case of

UPGRADE Vol. X, No. 2, April 2009 35© Novática

Libre Software for Enterprises

product lines, the commodity part is usually part of the
commonalities of the software. As such the domain engi-
neering is more influenced by software may need different
ways to adjust it to a specific application.

Figure 3 shows the landscape of technology versus busi-
ness decisions on making or acquiring software. There are
two corner areas to be avoided in producing technology.
The upper-right hand corner should be avoided at any cost,
because it would mean passing the own added value to com-
petitors. The lower-left hand corner has to be avoided in
order to save on development costs, since commodity tech-
nology can be obtained cheaper by buying it instead of
making it. Healthy software development is characterised
by the middle area, from top-left to bottom-right. Differen-
tiating software is developed within the organisation (top-
left corner). Commodity software is bought at the market
or even available at no cost (OSS).

Any software in systems, including product line soft-
ware, is moving from top to bottom in the diagram. Soft-
ware starts as being differentiated for some party. At a cer-
tain moment, the software does not provide enough added
value to the products and it can be considered as basic to
the business, at later stages the software even moves to-
wards commodity.

Healthy software development is characterised by mov-
ing from left to right, and at the same time, from in-house to
open collaborations. In order to avoid the top-right hand
and the lower left-hand corners, these moves have to be
made at the right pace. An example of such movement is
the case of DVTk software2 [8] of Philips Healthcare which
has moved in several steps from proprietary and differenti-
ating software to open source and commodity software dur-
ing 1994-2002.

Each individual company needs to analyse their soft-
ware in order to know when to change their way of collabo-
ration. This especially holds for companies producing prod-
uct lines. Because of the long lifetime of a single product
line, continuously there are parts of it that move to com-
modity, whereas the product line has to stay alive and
healthy. This requires additional effort during planning,
definition of common and variable assets, and architecture
mechanisms. An additional complication is related to the
fact that companies have limited control over software cre-
ated in OSS developments.

3.2 OSS for Product Lines
Because of the size of the development, product line

organisations are often involved in distributed development,
which works very efficiently within OSS communities.
Moreover, in reuse procedures it is unwise to ignore the
large amount of OSS that is available. Within the COSI

project [2] we experimented with case studies exploiting
OSS in 5 fundamental different ways:

1) Adopting the development practices within product
line development. This is called inner source, and will be
explained in Section 3.2.1.

2) Using OSS development tools in the development
of the product line. This is the easiest form of using OSS in
product lines. Aspects of this form will be discussed in Sec-
tion 3.2.2.

3) Using OSS components in the products of the prod-
uct line. This induces more involvement and planning. It is
described in Section 3.2.3.

4) Opening up products of the product line. Products,
or a complete product lines that were originally developed
inside the company are contributed to OSS communities,
see Section 3.2.4.

5) Establishing a symbiotic relationship. Developing the
product line using the resources of an OSS community, see
Section 3.2.5.

3.2.1 Inner Source
Inner source is a way to exploit the advantages of dis-

tributed development in the open source way, but with the
need to avoid problems with planning, ownership and con-
trol. Several companies have adopted an inner source de-
velopment model [9]. In inner source development a set of
teams collaborate in a cooperative eco-system. Similar to
OSS development, inner source development applies an
open, concurrent, model of collaboration. It implies distrib-
uted ownership and control of code, early and frequent re-
leases, and many continuous feedback channels. It makes
use of organisation mechanisms already in place, e.g. for
escalation of conflicts or setting up roadmaps. Inner source
enables flexibility in starting, stopping, and changing of
collaborations, in timing of and setting priorities for devel-
opment teams across organisational (and geographical)
boundaries. Companies can use inner source development
as an intermediate step towards the integration of open
source in their products.

Inner source is an established way of development within
Philips Healthcare [10]. The company delivers a product
line involving wide range of medical imaging products to
its customers (hospitals in general) in various modalities
[4]. The domain engineering group provides a platform con-
sisting of a collection of reusable and configurable compo-
nents, based on a common architecture. The domain engi-
neering group faced the problem that they may become a
bottleneck to the many application development groups. The
domain releases are planned in a process with many
stakeholders, so the resulting release schedule cannot al-
ways satisfy the planning of certain application engineer-
ing groups. Market dynamics can force product groups to
change their planning, but the domain planning process lacks
flexibility to adapt to these changes.

The inner source development is based on elements of
open source development, supported by a Web-based col-
laborative development environment. It decouples applica-

1 TPPT Our experience from the European software industry is in
line with the view of Perens, who estimates that "Perhaps 90% of
the software in any business is non-differentiating".
2 Dicom Validation Toolkit, OSS supporting medical image ex-
change compliance. <http://www.dvtk.org/>.

36 UPGRADE Vol. X, No. 2, April 2009 © Novática

Libre Software for Enterprises

Figure 3: Efficient and Effective Software Development.

Figure 4: Leveraging Open Source Opportunities.

tion engineering from the domain engineering, as each ap-
plication engineering group can decide themselves whether
they:

Use as is: they wait for the next release of the plat-
form.

Contribute through patches: take an earlier version
of a component and optionally patch it.

Work together as virtual team: take responsibility
for the development of some, for those group crucial, do-
main components.

The main inner source development principles have easy
access to all information of the product line. As in OSS de-

velopment the policy is to release early and often to enable
fast information flow from domain to application. There is
a distributed ownership and control of all domain assets.
The domain team owns and develops domain components.
An application developer is allowed to change components,
but is responsible for the change. The change may be of-
fered back to the domain team. The platform team can ac-
cept the patch into the platform, taking over ownership.

As a consequence of this, the involvement of the appli-
cation teams in the domain is improved. This has as a side-
effect that the platform is more widely in use than before,
and is better suited to the needs of the application groups.

UPGRADE Vol. X, No. 2, April 2009 37© Novática

Libre Software for Enterprises

Inner source has enabled new product launches since 2005.
It led to a time-to-market reduction of at least 3 months.

However the inner source model does not help to intro-
duce third party software into the software product line.
Collaboration is limited to the company. The control over
the software is then clear and distributed development and
maintenance is improved over the original situation. Inner
source provides methods of collaboration and software de-
velopment on top of the traditional methods. This is impor-
tant, because it allows normal operations to proceed as usual,
thus retaining the strong points of the traditional manage-
ment structures, while creating room for new and more flex-
ible ways of collaboration.

3.2.2 Using OSS Tools
This is the easiest form of benefiting from OSS in prod-

uct lines. As the OSS does not appear in the final product, it
is easy for the user to comply with the rules of the OSS
community. Many tools are already available open sourced,
and as long as they fit in the development model of the com-
pany they can be used. A complicating factor is that not many
product line specific OSS tools exist. A list of useful prod-
uct line tools can be found at the software product lines tool
vendors’ page3 . Most of these tools are not open sourced.
Some useful tools that are used within COSI for product
line development and are OSS are:

Stylebase for Eclipse: open source tool supporting
the reuse and sharing of architectural knowledge4 .

Subversion: Providing version management5 .
Semantic MediaWiKi: a tool that support the collabo-

rative development of documents within a collaborative
development environment6 .

3.2.3 Using OSS Components
The use of OSS in product lines is in principle not much

different from using other third party software (COTS) in
the product line. However there are several points of atten-
tion. Planning of third party software in product lines al-
ways suffers from the fact that that it happens at a pace that
is not controlled by the company: new releases are distrib-
uted that improve upon earlier ones in ways that are not
controlled by the company. These improvements will influ-
ence the product line, since parts of the new third party fea-
tures are used within domain engineering, influencing all
products. Therefore the new release needs to be incorpo-
rated, and proprietary parts of the product line have to be
adapted. Often the new release is based on architecture
mechanisms and interfaces which are different to what was
practice within the product line. In order to deal with the
situation, the organisation needs to know in advance what
is going to happen, and in the case of COTS software this
often means good contacts with the supplier. In an OSS de-
velopment, knowledge of future releases is best obtained
through the involvement in the community itself. At least
being connected to mailing lists already informs about what
is going to happen. In addition, if some of the developers
are involved in the development of OSS, the company may

have influence in which way the software evolves. This
may even lead to incorporation of its own architecture
mechanisms and standards in the OSS.

Instead of waiting for new releases of COTS, and keep-
ing contact with the supplier, OSS adapts in a more con-
tinuous way. Instead of the normal contact with the vendor
of COTS, companies need to get involved in the OSS com-
munity. The possibility of obtaining early versions of new
software which may still have some bugs helps to test it
early for compliance with the product line, and fast incor-
poration within the family as soon as it is stable. Issuing
bug reports and corrections helps the community to keep
high-quality software, which is a commodity, but still im-
portant for the own product line. Decisions have to be taken
on which parts (and which versions) of the OSS will be-
come part of the platform, and what will be only used in
some applications. In fact, it may be a strategy to incorpo-
rate latest versions of the OSS only in several "trial" appli-
cations, as is the case with normal use of COTS. Both do-
main and application engineering may be involved in OSS
development.

A concern of OSS development is related to the issue of
licensing. This concern will affect the way OSS can be used
within a product line organisation. Several open source li-
censes ask to put the source of the additional software in
the open community as well. There are technical options to
deal with this through the provision of loose coupling of
OSS and software provided under a "traditional" propri-
etary software license. However, a company often needs to
donate some own software (glue, interfaces, daemons…)
to the OSS community to demonstrate good will [11]. Spe-
cial care has to be made when software from several sources
is incorporated in the product line. Licenses for different
pieces of OSS may be in conflict with each other. It should
be communicated and managed within the organisation what
is happening for several reasons:

Ignoring licenses in one department may lead to the
necessity of opening differentiating software of other de-
partments.

OSS use in application development may indicate a
move toward commoditization, which in turn may mean
that the software should become part of the commonality.
Note that this is not always that case, as the OSS relate to
application specific code for only a few products.

New versions of OSS in domain software may make
parts of some applications obsolete.

OSS use may lead to adapted internal standards in
the product line. The only way to deal with this is the agree-
ment of all parties involved in the product line.

In the context of being involved in OSS development,
the company may introduce its own variability manage-

3 <http://www.softwareproductlines.com/resources/vendors.html>.
4 <http://stylebase.tigris.org>.
5 <http://subversion.tigris.org>.
6 <http://semantic-mediawiki.org/wiki/Semantic_MediaWiki>.

38 UPGRADE Vol. X, No. 2, April 2009 © Novática

Libre Software for Enterprises

ment (tooling) into the community. This eases the configu-
ration problem for the OSS community as well. However,
the community may not appreciate it and may discard the
variability management. In that case the company may set
up, or join, another community that does adopt the tooling,
after which it announces that it uses this open tooling. This
may secure the open maintenance of the own mechanisms
and the acceptance by the community. However, at the same
time complete control over these mechanisms is lost. The
company needs to stay involved, and thus it needs to invest
in the OSS community, to keep the tooling acceptable for
their own use.

In the case of conflicting architecture standards, an op-
tion is to use the practices adopted for COTS. Create pro-
prietary wrappers or glue code to connect the own mecha-
nisms to those that are available for the OSS components.
This may need frequent updates, as both own and external
mechanisms evolve independently. This implies effort in
domain development and possibly also in application de-
velopment for certain application-specific wrapper code in
the final products. This solution concentrates on technical
integration. It works well as long as the solution does not
interfere with reusability, clarity and manageability of inte-
gration architecture. The frequent changes of OSS, together
with a lack of good documentation may make this approach
quite laborious [11].

Another option is that the company adopts the architec-
ture mechanism which is in use within the OSS community.
This has a disadvantage in that both domain and applica-
tion engineering needs to be transferred, which may mean a
lot of effort. The company has to be sure that the mecha-
nism is good enough for their purposes, and that they can
still manage their own variability. As with the other ap-
proaches the lack of architecture description and the fre-
quent changes may make this a difficult option. Also in this
case the company needs to stay involved, and thus it needs
to invest in the OSS community, to keep the tooling accept-
able for their own use.

3.2.4 Opening up Products of the Product Line
Many companies have had good experience in opening

up commodity software. Although at first glance opening
software means giving away your intellectual property, this
is normally not the case. Software that is at the lower part
of diagram, i.e. commodity software, does not contain ex-
pensive intellectual property. This can be shared without
much danger. An important asset is the know-how to adapt
the own software to the needs of the customers, and this is
a kind of knowledge which should not given away. Clients
conceive that it is easier and cheaper to hire the company to
install the software, than to do the entire configuration them-
selves.

For Philips Healthcare the first experience of opening
up software was DVTk software [8]. This software sup-
ports the verification of compliance with the medical im-
age exchange standard DICOM. Since clients will connect
equipment from different vendors it is important that all

companies comply with the standard. However, the DVTk
is just commodity software which belongs to the company.
Therefore Philips decided in 2005 make it open source. This
enables sharing the development and maintenance on a
much wider scale. In particular the lead time to faster de-
velopment and maintenance of the software, especially for
those parts of DICOM which are generic and not only rel-
evant to the needs for Philips.

3.2.5 Symbiotic Relationship
Finally, own pieces of commodity software may be do-

nated to the community to ensure its support by the com-
munity. This leads to less maintenance effort for the own
company. Maintenance is shared with competitors and peo-
ple in other domains, who all need the software. Improve-
ments and testing of the software is done in the commu-
nity, and the company itself is supportive in a collaborative
way to ensure that the correct issues are addressed.

This can be very effective, in particular for tools or com-
ponents which have already been obtained elsewhere. Be-
ing involved in the community enables the company to en-
sure that their requirements are considered, and that the
software proceeds in a way which is beneficial for the com-
pany. For instance Philips Healthcare is now part of the
Subversion community. The original goal was to improve
the software for solving tree conflicts. This approach was
successful through its donation of a rename-ware merge
tool, which was part of Subversion release 1.6. In the mean-
time Philips has become an expert user of Subversion and
thereby influences the future direction of the Subversion
project.

4 Product Lines in OSS Development

4.1 Product Line Practices
From the OSS perspective, some research has investi-

gated specific OSS projects with a view to analyse what
and how certain product line principles and practices have
been adopted. For example, an analysis of the Linux kernel
[12] "demonstrates how the Linux Kernel achieves some of
the goals that the [Software Product Line] guidelines also
aim at". Further, van Gurp [13] analysed practices used in
three large OSS projects (Eclipse, Mozilla and Linux) with
a view to suggesting improvements to product line devel-
opment, and concludes by suggesting to Product line own-
ers that "there is this set of practices that may be found in
many open source projects that is known to work well at
least in that context".

Chastek et al. [14] have investigated specific develop-
ment models for product lines with a view to analyse how a
specific OSS project has adopted such a model. They used
a Framework for Software Product Line Practice7 devel-
oped by the Carnegie Mellon® Software Engineering In-

7 http://www.sei.cmu.edu/productlines/framework.html

UPGRADE Vol. X, No. 2, April 2009 39© Novática

Libre Software for Enterprises

stitute (SEI). In their analysis of the Eclipse project and its
community, they show that "Eclipse has managed to strike
an effective balance between planned directions and indi-
vidual contributions and also shares the product line chal-
lenge of effective communication between those who develop
core assets and those who use them". In summary, although
some OSS products can be viewed as a product line (e.g.
Eclipse), product line principles are not widespread in use
within OSS communities.

4.2 Architecture and Variability
An important asset in product lines is the architecture of

the platform, which defines standards for the whole product
line. All systems have to comply with this architecture to
ensure effective use of the platform, and the reach the goals
of product-lines to reduce development effort. In particular,
in many OSS communities, the architecture is often not well
established, and compliance with the architecture is often
difficult to check [15].

OSS communities often have other ways of dealing with
variability as is in use within a product line. In many cases,
the OSS was never meant to be used in product lines, and
problems related to complex configuration processes are
abundant within the open source world. Variation points and
variants are (almost) absent in OSS development. Variations
in time and in space are not clearly separated. Variation is
modelled in traditional ways through programming language
and compiler directives. This is not very effective for prod-
uct-lines (see Section 2.2).

However, OSS communities have developed effective
ways to deal with internal configuration and product build-
ing. These mechanisms can be improved, described more
clearly, enabling the introduction of effective variability
management.

4.3 Two Processes
Within OSS communities, there is no clear distinction

between domain and application engineering. However, both
practices are performed within the communities. A core
group of experienced developers in the community is often
involved in those activities which we can assign to domain
engineering. Central software which is used in the complete
software suite of the community is built by the core devel-
opers. Developers who are less experienced or less active
are often working on specific applications. However, as in
product-line engineering, core functionality may emerge
from these people as well. Promoting an asset from an ap-
plication to the domain is relatively easy in OSS develop-
ments, and this is also one of the advantages of inner source
development (see Section 3.2.1).

The scope of the OSS is often not well established. This
eases the flexibility of it, and it enlarges the applicability of
the software. However, the lack of a good architecture and a
variability model makes it difficult to apply the software. It
leads to differences in understanding of which mechanisms
are allowed and which are not, resulting in reduced consist-
ency of the different parts.

5 Conclusions
This paper investigated the use of OSS in product lines.

The OSS development model is an inherently distributed
and attractive way of building software since it has been
shown that good quality software can be produced using
this model. Companies can use the OSS communities for
producing and maintaining commodity software. This frees
company resources for producing differentiated software.
However, such introduction of OSS in a product line is not
without problems, and it still costs effort to stay involved
within the OSS community. As the control and ownership
of OSS is (in most cases) not within the company, it has to
be involved and invest effort to reap the advantages of the
OSS. The company has to consider its planning process for
the product line, how to be involved and how to track the
evolution of the OSS, when and how to introduce new ver-
sions. It has to take into account that legal problems will
occur if application engineering is not aware of OSS in do-
main assets. Similar problems occur if application engineer-
ing connects OSS too tightly to domain assets that are con-
sidered to be differentiating for the company.

Technical problems may occur if the architecture of the
OSS is not compatible with those of the product line. The
company may use it involvement to influence the OSS com-
munity, or it may incorporate software code wrappers for
its own products.

Product line organisations often have a large develop-
ment organisation that is distributed, merely because of the
size of the development. Distributed development gives a
lot of coordinating problems, some of which are addressed
by OSS development. In order to avoid some of the disad-
vantages of OSS use, an inner source development model
may be used. This solves the distributed development prob-
lem, but it does not lead to the sharing of effort that occurs
when OSS components are a part of the product line.

References
[1] Jan Bosch. "The Challenges of Broadening the scope

of Software Product Families". Communications of the
ACM, December 2006, pp. 41-44.

[2] COSI – Co-development using inner & open source
in software intensive systems. ITEA project 2005-
2008. <http://itea-cosi.org/> and <http://
www.friprog.no/Laer-mer/Prosjekter/COSI-Library-
of-Assets>.

[3] K. Pohl, G. Böckle, and F. van der Linden. "Software
Product Line Engineering: Foundations, Principles,
and Techniques". Springer, 2005.

[4] Frank van der Linden, Klaus Schmid, Eelco Rommes.
"Software Product Lines in Action". Springer Verlag,
2007.

[5] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl,
B. Ramesh, and A. Vilbig. "A Meta-Model for Repre-
senting Variability in Product Family Development".
In: Proceedings of the 5th International Workshop on
Product Family Engineering (PFE-5), Siena (Italy),
2003, pp. 66-80.

40 UPGRADE Vol. X, No. 2, April 2009 © Novática

Libre Software for Enterprises

[6] K. Kang, S. Cohen, J.A. Hess, W.E. Novak, and S.A.
Peterson. "Feature-Oriented Domain Analysis (FODA)
Feasiblity Study". Technical Report, Software Engi-
neering Institute, Carnegie-Mellon University (USA),
1990.

[7] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H.
Obbink, and K. Pohl. "Variability Issues in Software
Product Lines". In: Proceedings of the 4th International
Workshop in Product Family Engineering (PFE-4),
Bilbao (Spain), October 3-5, 2001, Springer, Berlin
Heidelberg New York, LNCS 2290, 2002, pp. 13-21.

[8] Frank van der Linden, Björn Lundell, and Pentti
Marttiin, "Commoditization of Industrial Software: A
Case for Open Source". To appear in IEEE Software
July-August 2009.

[9] A.A. Jilderda. "Inner Source Software Engineering at
MIP fostering a meritocracy of peers". Research Re-
port, Philips Research, The Netherlands, 2004.

[10] Jacco Wesselius. "The Bazaar inside the Cathedral:
Business Models for Internal Markets". IEEE Software
Vol. 25, No. 3, May/June 2008 pp. 60-66.

[11] Janne Merilinna and Mari Matinlassi. "Product Fam-
ily Approach for Integration of In-house Software and
open source Components". In F. van der Linden and
B. Lundell (Eds.) Proceedings on the Second Interna-
tional Workshop on OSSPL07 Open Source Software
and Product Lines 2007 (co-located with The Third
International Conference on Open Source Systems –
OSS 2007), June 14 2007, Limerick (Ireland). <http://
w w w . i t e a - c o s i . o r g / m o d u l e s / w i k i m o d /
index.php?page=OssPl07 paper #2>.

[12] J. Sincero, H. Schirmeier, W. Schröder-Preikschat and
O. Spinczyk. "Is The Linux Kernel a Software Prod-
uct Line?". In F. van der Linden and B. Lundell (Eds.)
Proceedings on the Third International Workshop on
Open Source Software and Product Lines: OSSPL07
Asia (co-located with The 11th International Software
Product Line Conference – SPLC 2007), September
10, 2007, Kyoto (Japan). <http://itea-cosi.org/modules/
wikimod/index.php?page=OssPlas07>.

[13] J. van Gurp. "OSS Product Family Engineering". In
First International Workshop on Open Source Software
and Product Lines (co-located with The 10th Interna-
tional Software Product Line Conference – SPLC
2006), Maryland (USA), 2006. <http://
www.sei.cmu.edu/splc2006/Gurp_paper.pdf>.

[14] G.J. Chastek , J.D. McGregor, and L.M. Northrop.
"Observations from Viewing Eclipse as a Product
Line", in F. van der Linden and B. Lundell (Eds.)
OSSPL07 Asia (co-located with The 11th International
Software Product Line Conference – SPLC 2007),
September 10, 2007, Kyoto (Japan). <http://itea-
c o s i . o r g / m o d u l e s / w i k i m o d /
index.php?page=OssPlas07>.

[15] Imed Hammouda and Tommi Mikkonen. "Open source
Contributions as Platform Specialization Units". In F.
van der Linden and B. Lundell (Eds.) Proceedings on

the Second International Workshop on OSSPL07 Open
Source Software and Product Lines 2007 (co-located
with The Third International Conference on Open
Source Systems – OSS 2007), June 14 2007, Limerick
(Ireland). <http://www.itea-cosi.org/modules/wikimod/
index.php?page=OssPl07 paper #3>.

