Monograph: Information Technology in the Tourism Industry (published jointly with Novática*)

Guest Editors: Antonio Guevara-Plaza, Andrés Aguayo-Maldonado, and Roman Egger

2 Presentation: Information Technology, a Powerful Tool for Tourism — Antonio Guevara-Plaza, Andrés Aguayo-Maldonado, and Roman Egger

7 Specific Inter-Cultural Features in On-Line Distribution — Roman Egger, Mario Jooss, and Sabine Schmeisser

14 Context-based Matchmaking to enhance Tourists’ Experiences — Carlos Lamsfus, Christoph Grän, Aukrene Alzua-Sorzabal, and Hannes Wernher

22 Testing Delivery Systems in Transnational Virtual Learning: The Vocational Management Training for the European Tourism Industry (VocMat) Case Study — Cathy Guthrie and Lluis Prats-Planagumà

30 Technological Tools to support Online Marketing: SEGITTUR’s Role — Carlos Romero-Dexeus

33 Technological Innovation, a Challenge for the Hotel Sector — Patricia Miralles

39 Technology Map: Bringing R&D+I Benefits to SMEs in the Tourism Sector. The Case of TOUREG Project — Mateo Amengual-Rigo, Jaime Bagur-Mora, Sandor Van der Meer, and Anne-Laure Debrìx

UPENET (UPGRADE European NETwork)

48 From Informatic Spektrum (GI, Germany, and SI, Switzerland) Health Informatics

Large-Scale Antibody Profiling of Human Blood Sera: The Future of Molecular Diagnosis — Andreas Keller, Nicole Ludwig, Sabrina Heisel, Petra Leidinger, Claudia Andres, Wolf-Ingo Steudel, Hann Houver, Bernhard Burghet, Matthias Hein, Joachim Weickert, Eckart Meese, and Hans-Peter Lenhof

CEPIS NEWS

55 Selected CEPIS News — Fiona Fanning
Context-based Matchmaking to enhance Tourists’ Experiences

Carlos Lamsfus, Christoph Grün, Aurkene Alzua-Sorzabal, and Hannes Werthner

Tourists preparing for a journey suffer from information overload when they use the Internet to look for information about their next potential destination. Although approaches exist to support tourists in decision making (e.g. in form of recommendation systems), providing the right information for each type of tourist is still a challenging task. This is a major issue especially when tourists are already at a particular destination and desire to use their mobile devices to consume up-to-date travel-related information tailored to their current situation i.e. context. This paper presents a context-based matchmaking approach that addresses the needs of tourists during their trip and aims to provide a more satisfying visit experience. In order to identify a set of tourism objects (e.g. attractions) that are most attractive for tourists, the CONCERT framework is presented that exploits contextual information, such as location and time, as a filter to select relevant tourism objects. Within a second step, the matchmaking framework VMTO is introduced that acts on top of CONCERT and ranks the selected tourism objects according to personal tourist preferences.

Keywords: Context, Matchmaking, Ontologies, Semantic Web, Tourism, Tourist Classification.

1 Motivation

One of the industries that has benefited enormously from the use of the Internet is the tourism sector. Internet technology has created an online travel market where travel organizations are able to sell their products and communicate with their customers through electronic media. On the other hand, the richness of information that is available online has empowered tourists to exploit the Internet for researching travel-related information and even partially book objects for their trip online. This way, stakeholders (suppliers and consumers) benefit from the use of the Internet for information research and as additional selling channel. The provision and consumption of online travel services have become for both nearly a "daily" business.

The penetration of high-end mobile devices equipped with GPS together with decreasing mobile data prices have resulted in an increased usage of mobile services. Therefore Tourists like to access travel-related services not only in the pre-trip phase, but especially in the on-trip phase of the tourist life cycle (cf. Figure 1).

In the on-trip phase, tourists are mobile and act in unknown environments where they especially need personalized, up-to-date on-trip assistance in the form of information about tourism objects (e.g. attractions, museums, restaurants). Mobile tourism services, accessible through mo-

Authors

Carlos Lamsfus has a degree in Mechanical Engineering and another degree in Industrial Management Engineering. He is in the final phase of his PhD dissertation about contextual computing services in tourism at the University of Deusto. His research interests include context, context-awareness, semantics and interoperability. He has been a member of various international research groups, such as CEN/ISSS and CIDOC/CRM. He has taken part in several regional, national and international projects and has several publications in the areas of semantic technologies, context-awareness and tourism. <carloslamsfus@tourgune.org>

Christoph Grün studied business informatics at the University of Linz in Austria. After finishing his study he continued research and started his PhD within the E-Commerce group at the Vienna University of Technology. His work is related to the E-Tourism domain, as he focuses on customizing travel-related information through a sophisticated matchmaking process that relates tourist profiles against tourism objects. His research interests include mobile applications, context-aware systems and the Semantic Web. <gruen@ec.tuwien.ac.at>

Aurkene Alzua-Sorzabal received her PhD in Outdoor Recreation and International Tourism from Purdue University, U.S.A (1999). She is the director of the Basque Competence Research Centre in Tourism, CICtourGUNE, and a faculty at the University of Deusto. She has lead significant research programs at national and European level in the field of Tourism and Technologies: measurement and modelling of ICT in tourism and the adoption and integration of ICT in tourism. She has several publications and is Board Member of relevant organisations. <aurkenealzua@tourgune.org>

Hannes Werthner is Director of the Vienna PhD School of Informatics and Professor for E-Commerce at the Vienna University of Technology, where he directs the E-Commerce group. Previously, he was Professor for Computer Science and E-Commerce at the Vienna University of Economics, the University of Innsbruck and the University of Trento, Italy. He acts as the Editor-in-Chief of the journal Information Technology and Tourism, and is the founding president of IFITT (International Federation for Information Technology and Travel/ Tourism). He also established the international conference on IT and Tourism (ENTER), which is the leading academic conference in this domain. <werthner@ec.tuwien.ac.at>
bile handsets, provide the opportunity to cope with the tem-
poral and special constraints. However, using mobile de-
vices to obtain the right piece of information at a given
moment of time presents a real challenge. One reason is the
limited interaction possibilities due to the small mobile phone
screen size and lack of a keyboard, which demand more
cognitive work from the tourist.

In order to prevent information overload of the tourist
and provide only relevant information, these services should
sense and react to the current situation of the tourist. This in
turn might lead to an increase in the tourist’s satisfaction of
experiencing a relaxed sightseeing trip. Thus, given that
human mobility is the essence of tourism and that tourists
intensively use mobile devices, how can the right piece of
information be sent to tourists on the move? This goal can
be achieved by using customization, i.e. adapting an appli-
cation towards the current context of the tourist.

The main objective of the context-based matchmaking
framework presented in this paper is to support tourists’
mobility at a particular destination by helping them to iden-
tify relevant tourism objects matching their personal inter-
ests. This objective will be accomplished in a two-step proc-
 ess: firstly, contextual information is exploited to eliminate
those tourism objects that do not fit the current situation of
the tourist [1]. For example, it might be the case that they
are too far away and not reachable from the current position
of the tourist or that they are temporarily closed. Secondly,
a matchmaking process is presented that ranks the selected
tourism objects by matching the tourist preferences against
tourism objects on the basis of tourist types that are found
in scientific tourism literature [2]. The more similarities they
have in common, the more the tourism object contributes to
the tourist’s satisfaction and therefore should be ranked
higher.

The structure of the paper is as follows. Section 2 out-
lines relevant related work. Then section 3 presents the
CONCERT framework that exploits context information to
select relevant tourism objects. Section 4 introduces the
VMTO framework that ranks the selected set of tourism
objects based on tourist preferences. Finally, Section 5 con-
cludes this paper.

2 Related Work

In the following, we report on state of the art in the area
of context-awareness, tourism ontologies as well as user
profiling.

2.1 Context-awareness

Context-aware mobile systems have a long tradition in
tourism, which is a very well suited application domain for
these kinds of systems [3][4]. In fact, some studies show
that tourists will soon require mobile context-based serv-
ices [3][6][7]. However, most of the existing mobile tour-
ism guides and research prototypes do not fully exploit con-
text information in order to adapt the information to the
individual situation and requirements of tourists [8]. Only
few examples exist that provide more personalized infor-
mation by taking into account various context infor-
 mation [9][4][7]. Even though the CAIPS system [4]
provides rule-based push information, it does not present a
general framework to support mobility. It is rather focussed
on the modelling and definition of rules that can be used by
destination management organisations in order to push per-
asalized content to visitors.

The study of context in tourism plays a crucial role, since
it is an information facilitator in the negotiation process
between all available tourism information (offered by travel
organizations) and the information that visitors require at a
given moment of time based on their situation. Context is
the link between the need for information and the informa-
tion itself.

Since research in context-awareness began almost 20
years ago, two phases can be clearly distinguished. The first
one covered the 1990s and was primarily focused on study-
ing the notion of context under different disciplines. The
main objective of these applications was to enhance hu-
man computer interaction by providing the application with
context information. Although context was studied as a sec-
dondary variable in these applications, intensive work was
conducted in setting its theoretical foundations and thus
the most important definitions of context originated in that
decade [10][11][12].

During the 1990s ontologies were still not very well
known in the computer science community. Some ontology-based applications appeared during these years in different domain areas, such as knowledge management, information integration etc., but still the benefits of ontologies had not been fully discovered and their applicability in context-aware systems had not been yet experienced.

However, as of the year 2000, the second phase in context-aware research began, aiming at establishing a standard context management model that leverages semantic technologies. In fact, one of the greatest differences between the two phases is the use of semantic technologies to model context and to manage context information. However, in the second phase researchers have been more concerned in developing an ontology-based standard context management framework [13][14][15][16] rather than working on its theoretical foundations.

Existing approaches with respect to context-awareness in the field of human mobility have more or less re-used the concept of context and ignored the requirements for context modelling within this specific field. Not surprisingly, the subsequent models do not completely suit its requirements.

In most recent years ontologies have been widely used in pervasive computing and have been pointed out as adequate tools for context modelling and management [17][18]. They can be used to integrate, share and re-use context knowledge stemming from distributed and heterogeneous sources of information and in addition, facilitate the usage of logical reasoning capabilities that can be used both to check the context model’s consistency and to make implicit information explicit.

2.2 Tourism Ontologies

Recently, there has been a proliferation of ontologies that have been developed in the area of e-tourism. QALL-ME [19] is an EU-funded project that aims at establishing a shared infrastructure for multilingual and multimodal question answering in the tourism domain. Thereby, it allows users to pose natural questions and returns a list of answers in the most appropriate modality.

The HARMONISE [20] ontology is now the central element within the HarmoNET (Harmonisation Network for the Exchange of Travel and Tourism Information) that aims to create an International network for harmonization and data exchange in the tourism industry. The ontology focuses on two sub-domains of the tourism domain, namely events and accommodation.

CRUZAR’s ontology [21] is based on the upper-ontology DOLCE in order to model visitor’s profiles, travel routes and POIs. To describe POIs, it further reuses properties from the Dublin Core, FOAF and SKOS-Core. SPETA exploits concepts from the e-tourism ontology [22] in order to describe tourist services. In addition, it links to concepts from DBPEDIA and YAGO to describe concepts such as attractions or activities and FOAF to describe social links of tourists. DTG’s ontology [23] is built leveraging some existing taxonomies from DAML and GETTY.

2.3 User Profiling

As tourists have individual preferences, tourist profiling plays an essential role in the provision of personalized travel information. With this purpose in mind, the classical user model employed for personalization [24] needs to be adapted to model the needs and interests of tourists.

Based on Maslow’s hierarchy of individual need [25] a huge number of studies of tourist motivation have been conducted that investigate different factors as to why certain tourists undertake specific types of travel [26]. Related to

Figure 2: The Double Interoperability Level provided by CONCERT.
Information Technology in the Tourism Industry

<table>
<thead>
<tr>
<th>Ontology</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visitor [33]</td>
<td>Characteristics of the human being in mobility.</td>
</tr>
<tr>
<td>Preferences [33]</td>
<td>Information that describes the visitor’s personal characteristics, demographics, etc.</td>
</tr>
<tr>
<td>Role [33]</td>
<td>The role a visitor plays at a given moment.</td>
</tr>
<tr>
<td>Activity [15]</td>
<td>Represents what the visitor is doing at a given moment. This information can be taken from the mobile device’s agenda. (COMANTO).</td>
</tr>
<tr>
<td>Environment [16]</td>
<td>Represents the surroundings of the visitor (CoDaMoS) as well as the weather conditions at the location of the visitor.</td>
</tr>
<tr>
<td>Device [35]</td>
<td>Physical object the visitor carries with him/her.</td>
</tr>
<tr>
<td>Network [36]</td>
<td>Infrastructure to connect devices and convey information.</td>
</tr>
<tr>
<td>Motivation [33]</td>
<td>Represents the reason why the visitor is travelling.</td>
</tr>
<tr>
<td>Location [16]</td>
<td>Coordinates that define where a visitor is at a given moment of time.</td>
</tr>
<tr>
<td>Time [37]</td>
<td>Physical dimension that measures span between facts.</td>
</tr>
<tr>
<td>Tourism Objects</td>
<td>Represents the services provided in a certain environment.</td>
</tr>
</tbody>
</table>

Table 1: The ContOlogy Network of Ontologies.

this field is the work described in [27] that proposes a model of information needs of tourists forming a categorization of different types of needs, including functional, recreational, as well as aesthetic needs. Such needs, wants, behaviour and expectations of tourists can be further classified into tourist types. In [28] four different tourist types are distinguished, comprising the organized mass tourist, the individual mass tourist, the explorer and the drifter. A set of 15 different tourist types such as the action seeker, active sport tourist or thrill seeker is proposed in [2]. For example, the thrill seeker is described as type of person “interested in risky, exhilarating activities which provide emotional highs for the participant”. As pointed out in [26], such an absolute classification to classify tourists may not take into account the diversity of holidays tourists undertake and the inconsistencies in tourist behaviour. Over time, tourists might change their behaviour or have a mixed profile. The work in [29] examined whether such predefined travel types can be used as shortcuts to deliver personalized recommendations instead of forcing the user to fill out lengthy forms. Thereby, each of the predefined travel types is linked to certain activities. The study shows that travel types are indeed a useful means to capture the interests of tourists with respect to certain activities.

3 CONCERT: Contextual Computing in Tourism

CONCERT’s objective is to study the context of visitors of a particular destination with respect to the field of human mobility. The goal is to determine in a more precise way the information that formally describes the mobile visitor context and to define requirements of such applications. In this sense, context is regarded as the main entity, not an auxiliary variable for studying something else as in earlier approaches (cf. Section 2). Hence, it is of high importance to study the factors that define the context of people on the move and to find out which kind of information is at least needed to describe a mobile visitor’s context [1].

On a practical level, CONCERT proposes not to use sensor infrastructure to gather contextual information. Populating cities, regions and/or open areas with networks of sensors is not affordable.

In order to tackle this issue, the CONCERT framework gathers both contextual and tourism data from the Internet as well as from mobile embedded sensors (e.g. GPS), and
Information Technology in the Tourism Industry

does not require further complex infrastructural deployments (cf. Figure 2b). In this way, the need to populate a particular area of interest with sensors is avoided, and in addition, the usage of an application based on the CONCERT framework is not limited to those areas (cf. Figure 2a). The idea behind this approach is to increase the level of abstraction of context (thus, increasing the level of portability - interoperability- of the model), by providing the model with the means to access context information in an anywhere-anytime manner.

Finally, context information has to be translated into a consistent computing model so that it can effectively assist tourists in their mobility, in addition to enhancing and improving their visiting experience. Various context models have been identified and analyzed according to ubiquitous computing environments requirements [17] and context-aware applications [30][18]. Both studies indicate that ontologies clearly address all context modelling requirements and are an adequate tool for that purpose. Besides, ontologies have proven to be useful in information integration, re-use as well as sharing, which are essential to provide interoperability at the model level.

In an attempt to increase the level of scalability, modularity and interoperability at the model level, context is modelled in CONCERT by means of a network of ontologies [31][32]. This network of ontologies, called ContOlogy, incorporates the requirements identified in the field of human mobility and implements them in terms of motivation, preferences-demographics and role, according to standard parameters established by the tourism scientific community [33][34]. At the moment ContOlogy integrates 11 ontologies. Altogether there are 86 classes, 41 object properties, 22 datatype properties and 43 restrictions. The language used to specify each of the ontologies has been OWL [35] in its DL sublanguage. The level of expressivity shown by the network of ontology is SHOIN(D). The following table depicts ContOlogy’s main components.

A rule-based information engine, built on top of the ContOlogy network, filters the incoming tourism objects with respect to certain context factors at a given moment. These factors represent the situation of a visitor, i.e. his/her preferences, current weather condition and location, etc. and are used to filter personalized information as depicted in the examples in Figure 3.

For instance, the second rule depicted in Figure 3 takes into consideration the food preferences of a particular visitor. Given the visitor’s location, environment, preferences, time of the day, etc., a number of restaurants are offered to the user, that are in his/her surroundings and match his/her context.

4 VMTO: Vector-based Matching of Tourists and Tourism Objects

The task of the VMTO framework is to define a function that matches tourist profiles against the filtered set of tourism objects obtained from CONCERT, in order to produce a ranked list of objects for each given tourist. If a tourist profile matches the characteristics of an object, this object should be recommended to the respective tourist. Therefore, the matchmaking algorithm has to examine whether they share similar structures.

To estimate the similarity degree between tourist profiles and tourism objects, VMTO follows a vector-based matchmaking approach, whereby a given profile and each tourism object constitute vectors and are compared in a vector space model. The dimensions of the vector space model correspond to a restricted set of tourists types found in scientific tourism literature [2], such that each distinct tourist type (e.g. adventure or cultural type) represents one dimension in that space. The selected tourist types have to conform to the characteristics of the respective destination (e.g. a sun lover type may not be well suited for a city destination).

Thereby, a tourist profile vector indicates the degree to which tourists identify themselves with the given types. Typically, individual tourists cannot be characterised by only one of these archetypes but have mixed profiles as they show attributes of several types, although to varying degrees. Thus, tourist types model the tourists’ generic interests in an abstract form. Vectors are suited to model such tourist
types, whereby each dimension corresponds to a certain tourist type while the value indicates how much the tourist identifies himself or herself with the corresponding type.

Figure 4 depicts an exemplary tourist, who likes to enact in the role of an adventurer, followed by sport and sightseeing, and rather dislikes cultural activities.

In the same way as the tourist profile is represented in form of a vector, every tourism object is modelled through a vector as well. Thereby, this vector describes in a quantitative way how much the object is related to the given types. For example, the famous cathedral "Stephansdom" (St. Stephen’s cathedral) in Vienna might be highly relevant for sightseeing tourists but not for such kind of tourists that would like to do some risky activities.

As destinations usually offer a large number of tourism objects to visitors, we propose a semi-automatic process to link the given tourist types to appropriate tourism objects. Therefore in a first step, domain experts mark, for each of the prototypical tourist types (e.g. adventure or cultural types), a small sample of typical tourism objects that are closely related to these types (cf. Figure 5). The degree of relationship is specified with different weightings. That is done individually for each tourist type.

After this step, certain tourism objects (e.g. the Spanish Riding School) are linked to their best corresponding tourist type (e.g. the cultural type). Some tourism objects (e.g. the clock museum) might not have been linked to any of the tourist types by the domain expert. In addition, some
weighting information might be missing. For example, we do not know whether the "Spanish Riding School" is also relevant for other tourist types such as the explorer.

To tackle these issues, ontological knowledge is exploited to define a similarity metric between the different tourism objects. For establishing a similarity metric, all tourism objects have to be semantically annotated according to a tourism ontology. This similarity metric can then be used to propagate the weightings throughout the semantic network (of tourism objects). For example, based on the fact that the Albertina Museum is highly relevant for cultural tourists and given the statements #Albertina_Museum rdf:type Museum, #Museum_Modern_Art rdf:type Museum it can be derived that the "Museum of Modern Art" might be relevant for cultural tourists as well as it belongs to the same class. Not only rdf:type and rdfs:subClassOf relations can be exploited to derive the similarity between objects, but also user-defined properties. If two objects have the same architectural style or are linked to the same ruling house (e.g. house of Habsburg) they also should have a higher similarity degree. The weightings are thus dependent on the relationships within the semantic network.

For defining a similarity metric, ontology-based similarity approaches can be used, including taxonomy-based and feature-based similarity measures [38]-[39]. After this step, every tourism object has now a vector that expresses the correlation to each of the given tourist type in a quantitative way. A common method to obtain the similarity between the tourist profile vector and the set of tourism object vectors is to measure the cosine angle between two vectors. If the vector space is non-orthogonal, kernel based algorithms can be applied to measure the similarity in such a space. At the end of this matchmaking process, a numerical score can be assigned to each tourism object to indicate its attractiveness for a given tourist.

5 Conclusion
eTourism represents an active field of research in several disciplines, comprising computer science, human-computer interactions, recommendation systems, as well as mobile pervasive computing. This paper presents a context-based semantic matchmaking framework in order to propose personalized tourism objects to tourists on their trip, thus enhancing their experiences while they are at a particular destination. The framework combines two existing approaches, i.e. the contextual computing framework in tourism, CONCERT and the VTMO ranking framework. Although the emphasis of this paper is on promoting context-based services in the realm of tourism, it also aims to provide new aspects in the realm of ubiquitous computing, semantic technologies and recommendation systems.

The CONCERT framework is based upon a thorough review of relevant literature and its main contributions can be summarized as follows. First, it provides a new theoretic approach to study the notion of context, which is framed within the field of human mobility. In addition, CONCERT provides a double interoperability level: at the infrastructural level by not using sensors to gather contextual information and at a model level by using networks of ontologies in order to be able to share, re-use and integrate contextual knowledge.

However, tourists have individual preferences, which CONCERT does not address in a holistic way, since its profiling approach is based on the concept of roles, which are defined by the UNWTO and describe various purposes of trips. User profiling and classification are an important research issue in tourism and especially tackled by recommender systems. Understanding users’ interests is an important prerequisite for delivering personalized information. Thus, the VMTO framework defines a function that matches tourists’ profiles against a filtered set of tourism objects in order to produce a ranked list of objects for each given tourist. This way, the ranking produced by the VTMO enhances the context-based functionality provided by the CONCERT framework.

References
Information Technology in the Tourism Industry